
________________________________________________________________________
                            UTDallas,  Jonsson School of Engineering and Computer Science

Dr. Mark C. Paulk
Mark.Paulk@utdallas.edu, Mark.Paulk@ieee.org 

An Introduction to Software 
Architecture and Design I

mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@ieee.org


Questions About Architecture

What is “software architecture?”

Is it different from “design?” How?

Why should a software professional care about 

architecture? Or design?

• Why should a student care?

How do we do architectural design?

• What is involved in an architecture?

How would we recognize a “good” architecture?

2



Software Architecture References

L. Bass, P. Clements, and R. Kazman, 

Software Architecture in Practice, 

Fourth Edition, 2021.

Recommended
• H. Cervantes and R. Kazman, Designing 

Software Architectures: A Practical Approach, 

2016.

• P. Clements, F. Bachmann, L. Bass, D. Garlan, 

J. Ivers, R. Little, R. Nord, and J. Stafford, 

Documenting Software Architectures: Views 

and Beyond, 2002. 

• G. Fairbanks, Just Enough Software 

Architecture, 2010.

• A.J. Lattanze, Architecting Software Intensive 

Systems: A Practitioners Guide, 2008.

• R.C. Martin, Clean Architecture, 2017.

3



What Is a Software Architecture?

The software architecture of a system is the set 

of structures needed to reason about the system, 

which comprise software elements, relations 

among them, and properties of both. (Bass 2021)
- some partition systems into implementation units 

(modules), which are static

- some are dynamic, focusing on the way the elements 

interact with each other at runtime to carry out the 

system’s functions (component-and-connector)

- some describe the mapping from software structures 

to the system’s organizational, developmental, 

installation, and execution environments (allocation)

4



Structures and Views

A view is a representation of a coherent set of 

architectural elements, as written by and read by 

system stakeholders. 
- It consists of a representation of a set of elements 

and the relations among them.

A structure is the set of elements itself, as they 

exist in software or hardware.

• module

• communication and coordination (C&C)

• allocation

A view is a representation of a structure.

5



Early Design Decisions

The architecture is a carrier of the earliest and 

hence most fundamental, hardest-to-change 

design decisions.

- Will the system run on one processor or be 

distributed across multiple processors?

- Will the software be layered? If so, how many layers 

will there be? What will each one do?

- Will components communicate synchronously or 

asynchronously? Will they interact by transferring 

control or data or both?

- Will the system depend on specific features of the 

operating system or hardware?

- Will the information that flows through the system be 

encrypted or not?

- What operating system will we use?

- What communication protocol will we choose?
6



A Good Definition?

Is the Bass, Clements, and Kazman definition of 

architecture distinguishable from design?
- at least it focuses on reasoning about the system 

and its relationships

Is defining architecture as the early, critical 

design decisions any better?
- what is early? what is critical?

Would characterizing architecture as the top-

level design (as opposed to detailed) help?
- some architecturally significant design decisions are 

very detailed!

7



A Change-Driven Definition

Local change
- modify a single element

Non-local change
- multiple element modifications leaving the 

underlying architectural approach intact

Architectural change
- affects the fundamental ways in which the elements 

interact with each other

- will probably require changes all over the system

8



Every System Has an Architecture 
(Fairbanks 2010)

Architecture-indifferent design
- opens the door to complexity…

Architecture-focused design

Architecture hoisting

• design the architecture with the intent of 

guaranteeing a goal or property of the system

• you will either find
- code that manages the goal or property

- a deliberate structural constraint (often with 

reasoning or calculations) that ensures it

9



Defining Software Architecture

No single “good” definition of architecture…

Architectural decisions span the entire system or 

major subsystems.

Architectural decisions need to be made early 

and are critical because of their span.

Architectural decisions are driven by the 

system’s goals, which must be articulated.

10



Functionality

Functionality does not determine architecture. 
- Functionality is assigned to specific elements of the 

system (responsibility driven design).

- If functionality were the only thing that mattered, you 

wouldn’t have to divide the system into pieces at all; 

a single monolithic blob with no internal structure 

would do just fine.

The architect’s interest in functionality is in how 

it interacts with and constrains other qualities.

The functional requirements are not (usually) 

architecturally significant… leaving the non-

functional requirements aka quality attributes.

11



Quality Attribute

A measurable or testable property of a system 

that is used to indicate how well the system 

satisfies the needs of its stakeholders. 

You can think of a quality attribute as measuring 

the “goodness” of a product along some 

dimension of interest to a stakeholder.
- A qualification of a functional requirement is an item 

such as how fast the function must be performed, or 

how resilient it must be to erroneous input. 

- A qualification of the overall product is an item such 

as the time to deploy the product or a limitation on 

operational costs.

12



Common Quality Attributes

Availability

Deployability

Energy Efficiency

Integrability

Modifiability

Performance

Safety

Security

Testability

Usability

Other possible quality attributes include 

portability, scalability, mobility, … see 

IEEE/ISO/IEC 25010 
13



Tactics

A tactic is a design decision that influences the 

achievement of a quality attribute response. 

The focus of a tactic is on a single quality 

attribute response. 

• Within a tactic, there is no consideration of 

tradeoffs. 

• Tradeoffs must be explicitly considered and 

controlled by the designer. 

• In this respect, tactics differ from architectural 

patterns, where tradeoffs are built into the 

pattern.

14



Specifying Quality Attribute 
Requirements

Source of stimulus
- some entity (a human, a computer system, or any other 

actuator) that generated the stimulus

Stimulus
- a condition that requires a response when it arrives at a system

Environment
- the stimulus occurs under certain conditions

Artifact
- some artifact is stimulated: a collection of systems, the whole 

system, or some piece or pieces of it

Response
- the activity undertaken as the result of the arrival of the 

stimulus

Response measure
- when the response occurs, it should be measurable in some 

fashion so that the requirement can be tested
15



Quality Attribute

Availability

A property of software that it is there and ready 

to carry out its task when you need it to be. 

Builds upon the concept of reliability by adding 

the notion of recovery

“Availability refers to the ability of a system to 

mask or repair faults such that the cumulative 

service outage period does not exceed a 

required value over a specified time interval.” 

Availability is about minimizing service outage 

time by mitigating faults.

16



Dealing With Faults
(aka Defects, Errors, Bugs, …)

A failure’s cause is a fault. A fault can be internal 

or external to the system. 

Faults can be

• prevented

• tolerated

• removed

• forecast

Through these actions, a system becomes 

“resilient” to faults. 

17



Availability General Scenario



Availability General Scenario

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons 

Attribution License



Measuring Availability
We often measure availability properties such as

• MTBF: the mean time between failures 

• MTTR: the mean time to repair 

Steady-state availability is calculated as:

  MTBF / (MTBF + MTTR) 

This is how we calculate measures such as “99.99% 

availability” (often seen in SLAs). 

20



Sample Concrete Availability Scenario

A server in a server farm fails during normal 

operation, and the system informs the operator 

and continues to operate with no downtime. 



Goal of Availability Tactics

A failure occurs when the system no longer delivers a 

service consistent with its specification

• this failure is observable by the system’s actors. 

A fault (or combination of faults) has the potential to 

cause a failure. 

Availability tactics enable a system to endure faults 

so that services remain compliant with their 

specifications. 

The tactics keep faults from becoming failures or at 

least bound the effects of the fault and make repair 

possible. 



Goal of Availability Tactics



Availability Tactics

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons 

Attribution License



Quality Attribute 

Deployability

Deployability refers to a property of software 
indicating that it may be deployed—allocated to 
an environment for execution—within a 
predictable and acceptable amount of time and 
effort. 

Deployment is a process that starts with coding 
and ends with real users interacting with the 
system in a production environment. 

If this process is fully automated—that is, if there 
is no human intervention—then it is called 
continuous deployment. 



Deployability Tactics

26



Quality Attribute

Energy Efficiency

Energy used by computers used to be free and 

unlimited—or at least that’s how we behaved. 

Architects rarely worried about energy 

consumption of software in the past. 

With the dominance of mobile devices, the 

increasing adoption of the IoT, and the ubiquity 

of cloud services, energy has become an issue 

that architects can no longer ignore. 

The consumption of energy can be managed by 

the architect, as with any other quality attribute.

27



Energy Efficiency Tactics

28



Quality Attribute

Integrability

Software architects need to be concerned about more 

than just making separately developed components 

cooperate; they are also concerned with the costs and 

technical risks of integration tasks. 

These risks may be related to schedule, performance, or 

technology.

Integration difficulty can be thought of as a function of

• Size – the number of potential dependencies between 

the components and the system

• Distance – the difficulty of resolving differences at 

each of the dependencies

29



Integrability Tactics

30



Quality Attribute 

Modifiability

Modifiability is about change, and our interest in 

it centers on the cost and risk of making 

changes. 

What can change?

What is the likelihood of the change?

When is the change made and who makes it?

What is the cost of the change?

31



Modifiability Tactics

32



Quality Attribute 

Performance

It’s about time and the software system’s ability 

to meet timing requirements. 

When events occur, the system, or some element 

of the system, must respond to them in time.

• real-time

• hard real-time

Characterizing the events that can occur (and 

when they can occur) and the system or 

element’s time-based response to those events 

is the essence is discussing performance.

33



Measuring System Response

Latency
- the time between the arrival of the stimulus and the 

system’s response to it

Deadlines

Throughput
- usually given as the number of transactions the 

system can process in a unit of time

Jitter of the response
- the allowable variation in latency

The number of events not processed because 

the system was too busy to respond.
34



Performance Tactics

35



Quality Attribute

Safety

“Don’t kill anyone” should be a part of every software 

architect’s mission statement.

Safety is concerned with a system’s ability to avoid 

straying into states that lead to damage, injury, or loss 

of life, which can be caused by a variety of factors
- Omissions

- Commission 

- Timing

- Problems with system values 

- Sequence omission and commission

- Out of sequence

Safety is concerned with detecting and recovering from 

these unsafe states to prevent or minimize harm. 
36



Safety Tactics

37



Quality Attribute 

Security

A measure of the system’s ability to protect data 

and information from unauthorized access while 

still providing access to people and systems that 

are authorized. 

An action taken against a computer system with 

the intention of doing harm is called an attack.

• an unauthorized attempt to access data or 

services

• an unauthorized attempt to modify data

• intended to deny services to legitimate users

38



A Simple Approach to Security

Confidentiality

• data or services are protected from 

unauthorized access
- a hacker cannot access your income tax returns on a 

government computer

Integrity 

• data or services are not subject to 

unauthorized manipulation
- your grade has not been changed since your 

instructor assigned it

Availability 

• the system will be available for legitimate use
- a denial-of-service attack won’t prevent you from 

ordering book from an online bookstore
39



Security Tactics

40



Quality Attribute 

Testability

Software testability refers to the ease with which 

software can be made to demonstrate its faults 

through (typically execution-based) testing. 

Specifically, testability refers to the probability, 

assuming that the software has at least one fault, 

that it will fail on its next test execution. 

Intuitively, a system is testable if it “reveals” its 

faults easily. 

41



Testability Tactics

42



Quality Attribute 

Usability

Concerned with how easy it is for the user to 

accomplish a desired task and the kind of user 

support the system provides. 

Usability comprises

• Learning system features. 

• Using a system efficiently. 

• Minimizing the impact of errors. 

• Adapting the system to user needs. 

• Increasing confidence and satisfaction. 

43



Usability Tactics

44



ISO/IEC 25010 Systems and Software 
Quality Requirements and Evaluation

(SQuaRE)
Functional 

suitability
- functional 

completeness

- functional 

correctness

- functional 

appropriateness

Performance 

efficiency
- time behavior 

- resource utilization

- capacity

Compatibility
- coexistence

- interoperability

Usability
- appropriateness 

recognizability

- learnability

- operability

- user error prediction

- user interface 

aesthetics

- accessibility

45



Reliability
- maturity

- availability

- fault tolerance

- recoverability

Security
- confidentiality

- integrity

- nonrepudiation

- accountability

- authenticity

Maintainability
- modularity

- reusability

- analyzability

- modifiability

- testability

Portability
- adaptability

- installability

- replaceability

46



Dealing with a New Quality Attribute

Capture scenarios

Assemble design approaches

Model the new quality attribute

Assemble a set of tactics

Construct design checklists

47



Architectural Pattern

Is a package of design decisions that is found 

repeatedly in practice

Has known properties that permit reuse

Describes a class of architectures

Inspired by Christopher Alexander’s A Pattern Language: 

Towns, Buildings, Construction (1977).

The Gang of Four (GoF): E. Gamma, R. Helm, R. Johnson, 

and J. Vlissides, Design Patterns: Elements of Reusable 

Object-Oriented Software, 1994.

48



Discovering Patterns

Patterns are by definition found in practice

• one does not invent them

• one discovers them

Patterns spontaneously emerge in reaction to 

environmental conditions

• as long as conditions change, new patterns 

will emerge

49



Relationships Between 
Tactics and Patterns

Tactics are the “building blocks” of design from 

which architectural patterns are created. 

Most patterns are constructed from several 

different tactics.
- these tactics might all serve a common purpose

- they are often chosen to promote different quality 

attributes

A pattern is a general solution. 

A documented pattern is underspecified with 

respect to applying it in a specific situation.

50



Patterns Establish A Relationship

A context
- A recurring, common situation in the world that gives 

rise to a problem.

A problem
- outlines the problem and its variants

- describes any complementary or opposing forces

- includes quality attributes that must be met

A solution
- appropriately abstracted

- describes the architectural structures that solve the 

problem

- how to balance the forces at work

51



The Solution for a Pattern

A set of element types
- data repositories, processes, objects, …

A set of interaction mechanisms or connectors
- method calls, events, message bus, …

A topological layout of the components

A set of semantic constraints covering topology, 

element behavior, and interaction mechanisms

Complex systems exhibit multiple patterns at 

once.

52



Architectural Patterns Listing
(SAiP 3rd edition)

Module patterns

• layered

Component-and-connector patterns

• broker

• model-view-controller

• pipe-and-filter

• client-server

• peer-to-peer

• service-oriented architecture

• publish-subscribe

• shared-data

Allocation patterns

• map-reduce

• multi-tier
53



Architectural Patterns Overview

Layered pattern

• defines layers (groupings of modules that offer 

a cohesive set of services) and a unidirectional 

allowed-to-use relation among the layers.
- usually shown graphically by stacking boxes 

representing layers on top of each other

Broker pattern

• defines a runtime component, called a broker, 

that mediates the communication between a 

number of clients and servers

54



Model-view-controller pattern

• breaks system functionality into three components: 

a model, a view, and a controller that mediates 

between the model and the view
- model is a representation of the application data or state, 

and it contains (or provides an interface to) application logic

- view is a user interface component that either produces a 

representation of the model for the user or allows for some 

form of user input or both

- controller manages the interaction between the model and 

the view, translating user actions into changes to the model 

or changes to the view

Pipe-and-filter pattern

• transforms data from a system’s external inputs to 

its external outputs through a series of 

transformations performed by its filters, which are 

connected by pipes
55



Client-server pattern

• clients initiate interactions with servers, invoking 

services as needed from those servers and waiting 

for the results of those requests

Peer-to-peer pattern

• computation is achieved by cooperating peers that 

request service from, and provide services to, one 

another across a network

Service-oriented-architecture (SOA) pattern

• computation is achieved by a set of cooperating 

components that provide and/or consume services 

over a network
- the computation is often described using a workflow 

language

56



Publish-subscribe pattern

• components publish and subscribe to events
- when an event is announced by a component, the 

connector infrastructure dispatches the event to all 

registered subscribers

Shared-data pattern

• communication between data accessors is 

mediated by a shared data store
- control may be initiated by the data accessors or the 

data store

- data is made persistent by the data store

57



Map-reduce pattern

• provides a framework for analyzing a large 

distributed set of data that will execute in parallel 

on a set of processors
- parallelization allows for low latency and high availability

- the map performs the extract and transform portions of the 

analysis

- the reduce performs the loading of the results

- extract-transform-load is sometimes used to describe the 

functions of the map and reduce

Multi-tier pattern

• the execution structures of many systems are 

organized as a set of logical groupings of 

components termed tiers
- tiers may be based on a variety of criteria, such as the type 

of component, sharing the same execution environment, or 

having the same runtime purpose

58



Architectural Pattern Example

Layered Pattern

Context

• all complex systems experience the need to 

develop and evolve portions of the system 

independently

• need a clear and well-documented separation 

of concerns

Problem

• The software needs to be segmented in such a 

way that the modules can be developed and 

evolved separately with little interaction 

among the parts, supporting portability, 

modifiability, and reuse.

59



Solution

• divide the software into units called layers

• each layer is a grouping of modules that offers 

a cohesive set of services

• completely partition a set of software

• a public interface

• relations between layers must be 

unidirectional
- if (A,B) is in this relation, we say that the 

implementation of layer A is allowed to use any of the 

public facilities provided by layer B 

Pattern Almanac 2000 by L. Rising lists over 100 patterns 

that are variants of, or related to, Layers.

60



Stack of Boxes Notation

61

A

B

C

Allowed-to-use relation reads from top down



Finer Points of Layers

No Using Above

The most important point about layering is that a 

layer isn’t allowed to use any layer above it. 

A module “uses” another module when it 

depends on the answer it gets back. 
- a layer is allowed to make upward calls, as long as it 

isn’t expecting an answer 

- this is how the common error-handling scheme of 

callbacks works

62



Finer Points of Layers

Arbitrary Allowed-to-Use

Any old set of boxes stacked on top of each 

other does not constitute a layered architecture.
- avoid arrows (allowed to use)

63

A

B

C



Finer Points of Layers

Sidecars

“Sidecars” may contain common utilities 

(sometimes imported).

• without a key, are you sure?

64

A

B

C

D



Finer Points of Layers

Bridging

It is impossible to look at a stack of boxes and 

tell whether layer bridging is allowed or not. 
- add stairsteps or vertical layers to your notation

- adding a key is essential!

65

Z A

B

C

D



Finer Points of Layers

Segments

Segments may denote a finer-grained 

decomposition of the modules.
- specify what usage rules are in effect among the 

segments

66

A

B

C

X Y Z

UT



Advantages of the Layered Pattern

Support design based on increasing levels of 

abstraction

Support enhancement

• affect at most two other layers

Support reuse

• standard interfaces with multiple 

implementations

67



Weaknesses of the Layered Pattern

Adds up-front cost and complexity

Contribute a performance penalty

Bridging may prevent meeting portability and 

modifiability goals

68



Example of the Layered Pattern

ISO Open System 

Interconnection (OSI)

69

Physical

Data Link

Network

Transport

Session

Presentation

Application



Architectural Pattern Example

Model-View-Controller (MVC) Pattern

Context

• user interface (UI) most frequently accessed 

and changed component of an interactive 

application

• users frequently like to have multiple 

perspectives (views) into the system

Problem

• in a large complex system, separate the UI 

design from the rest of the system

• allow changes to the interface with minimal 

impact on the rest of the system

70



Solution

• MVC pattern separates application 

functionality into three kinds of components
- Model – internal state of the application

- View – external representation of the model

- Controller – coordinates updates of the view in 

response to user input or model changes

Originally formulated in the late 1970s at Xerox 

PARC

Central ideas

• code reusability

• separation of concerns

71



MVC Elements

Model
• interacts with the data model of the application
• notifies the view when the state is updated 

allowing the view to change

View
• presentation layer for the application
• gets information from the model to update the 

presentation

Controller
• defines the way UI reacts to user input
• sends commands to the view to change the view’s 

presentation
• sends commands to the model to update the state 

of the model

72



Model-View-Controller Overview



Examples of the MVC Pattern

Video games
- MVC helps separate game, view and input logic

- allows change to code and ideas with ease

- each component can be easily added or removed 

without affecting other components

- allows reuse of code simply

Web applications

• PHP-based MVC web frameworks
- CakePHP

- CodeIgniter

• Java-based MVC web frameworks
- Apache Struts

- Wicket

74



Advantages of the MVC Pattern

Increase flexibility and reuse

• separation of concerns

• reduced coupling

Easily incorporate multiple views

Promotes testability through defined interfaces

75



Weaknesses of the MVC Pattern

Some fundamental complexity

• perhaps too complex for simple 

applications

Variance of the pattern among tools can be 

substantial

76



Two Perspectives

To make a pattern work…

Inherent quality attribute tradeoffs that the 

pattern makes
- Patterns exist to achieve certain quality attributes, 

and we need to compare the ones they promote (and 

the ones they diminish) with our needs.

Other quality attributes that the pattern isn’t 

directly concerned with
- but it affects…

- which are important in our application

77



78



Using Tactics Together

Decided to employ ping/echo to detect failed 

components → 

Security

• How to prevent a ping flood attack?

Performance

• How to ensure that the performance overhead 

of ping/echo is small?

Modifiability

• How to add ping/echo to the existing 

architecture?

79



Focus on Performance Tradeoff

80



81



Recognizing a Good Architecture

There is no such thing as an inherently good (or bad) 

architecture – architecture should fit some purpose.

• Arguable point … but note the hard tradeoff 

sometimes made between performance and 

modifiability

Architectures can only be evaluated in light of 

specific stated goals.

Bass, Clements, and Kazman identify rules of thumb 

for designing architectures.

• process recommendations

• structural recommendations

82



Architectural Process 
Recommendations

The architecture should be the product of a 

single architect or a small group of architects 

with an identified technical leader. 
- There should be a strong connection between the 

architect(s) and the development team.

The architect (or architecture team) should, on 

an ongoing basis, base the architecture on a 

prioritized list of well-specified quality attribute 

requirements. 
- Tradeoffs will always occur.

83



The architecture should be documented using 

views. 
- The views should address the concerns of the most 

important stakeholders in support of the project 

timeline. 

The architecture should be evaluated for its 

ability to deliver the system’s important quality 

attributes. 

The architecture should lend itself to incremental 

implementation.
- Cockburn’s walking skeleton and incremental 

rearchitecture approach

84



Structural Rules of Thumb

The architecture should feature well-defined 

modules whose functional responsibilities are 

assigned on the principles of information hiding 

and separation of concerns. 
- encapsulation

- well-defined interfaces

- information hiding

Quality attributes should be achieved using well-

known architectural patterns and tactics specific 

to each attribute.

85



The architecture should never depend on a 

particular version of a commercial product or 

tool. 

Modules that produce data should be separate 

from modules that consume data. 

Don’t expect a one-to-one correspondence 

between modules and components. 
- concurrency

- multi-threaded systems

Every process should be written so that its 

assignment to a specific processor can be easily 

changed, perhaps even at runtime.

86



The architecture should feature a small number 

of ways for components to interact. 
- do things in the same way throughout (consistency)

- low coupling

The architecture should contain a specific (and 

small) set of resource contention areas, the 

resolution of which is clearly specified and 

maintained.
- high cohesion

- separation of concerns

87



Questions?

Dr. Mark C. Paulk

University of Texas at Dallas

ECSS 3.610, EC31

800 W. Campbell Road

Richardson, TX 75080-3021

Mark.Paulk@utdallas.edu

Mark.Paulk@ieee.org

https://personal.utdallas.edu/~mcp130030/ 

88

mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@ieee.org
https://personal.utdallas.edu/~mcp130030/

	Slide 1
	Slide 2: Questions About Architecture
	Slide 3: Software Architecture References
	Slide 4: What Is a Software Architecture?
	Slide 5: Structures and Views
	Slide 6: Early Design Decisions
	Slide 7: A Good Definition?
	Slide 8: A Change-Driven Definition
	Slide 9: Every System Has an Architecture (Fairbanks 2010)
	Slide 10: Defining Software Architecture
	Slide 11: Functionality
	Slide 12: Quality Attribute
	Slide 13: Common Quality Attributes
	Slide 14: Tactics
	Slide 15: Specifying Quality Attribute Requirements
	Slide 16: Quality Attribute Availability
	Slide 17: Dealing With Faults (aka Defects, Errors, Bugs, …)
	Slide 18: Availability General Scenario
	Slide 19: Availability General Scenario
	Slide 20: Measuring Availability
	Slide 21: Sample Concrete Availability Scenario
	Slide 22: Goal of Availability Tactics
	Slide 23: Goal of Availability Tactics
	Slide 24: Availability Tactics
	Slide 25: Quality Attribute  Deployability
	Slide 26: Deployability Tactics
	Slide 27: Quality Attribute Energy Efficiency
	Slide 28: Energy Efficiency Tactics
	Slide 29: Quality Attribute Integrability
	Slide 30: Integrability Tactics
	Slide 31: Quality Attribute  Modifiability
	Slide 32: Modifiability Tactics
	Slide 33: Quality Attribute  Performance
	Slide 34: Measuring System Response
	Slide 35: Performance Tactics
	Slide 36: Quality Attribute Safety
	Slide 37: Safety Tactics
	Slide 38: Quality Attribute  Security
	Slide 39: A Simple Approach to Security
	Slide 40: Security Tactics
	Slide 41: Quality Attribute  Testability
	Slide 42: Testability Tactics
	Slide 43: Quality Attribute  Usability
	Slide 44: Usability Tactics
	Slide 45: ISO/IEC 25010 Systems and Software Quality Requirements and Evaluation (SQuaRE)
	Slide 46
	Slide 47: Dealing with a New Quality Attribute
	Slide 48: Architectural Pattern
	Slide 49: Discovering Patterns
	Slide 50: Relationships Between  Tactics and Patterns
	Slide 51: Patterns Establish A Relationship
	Slide 52: The Solution for a Pattern
	Slide 53: Architectural Patterns Listing (SAiP 3rd edition)
	Slide 54: Architectural Patterns Overview
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Architectural Pattern Example Layered Pattern
	Slide 60
	Slide 61: Stack of Boxes Notation
	Slide 62: Finer Points of Layers No Using Above
	Slide 63: Finer Points of Layers Arbitrary Allowed-to-Use
	Slide 64: Finer Points of Layers Sidecars
	Slide 65: Finer Points of Layers Bridging
	Slide 66: Finer Points of Layers Segments
	Slide 67: Advantages of the Layered Pattern
	Slide 68: Weaknesses of the Layered Pattern
	Slide 69: Example of the Layered Pattern
	Slide 70: Architectural Pattern Example Model-View-Controller (MVC) Pattern
	Slide 71
	Slide 72: MVC Elements
	Slide 73: Model-View-Controller Overview
	Slide 74: Examples of the MVC Pattern
	Slide 75: Advantages of the MVC Pattern
	Slide 76: Weaknesses of the MVC Pattern
	Slide 77: Two Perspectives
	Slide 78
	Slide 79: Using Tactics Together
	Slide 80: Focus on Performance Tradeoff
	Slide 81
	Slide 82: Recognizing a Good Architecture
	Slide 83: Architectural Process Recommendations
	Slide 84
	Slide 85: Structural Rules of Thumb
	Slide 86
	Slide 87
	Slide 88: Questions?

